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The aim of this paper is to give an algebraic formula for symmetry-adapted linear 
combinations avoiding intuitive or laborious projection operator techniques. By 
utilization of the tabulated Clebsch-Gordan coefficients and surface harmonics of 
the point-groups the symmetry-adapted linear combinations are given in formula 
(4). A five-step algorithm is proposed and the example of a tetrahedron worked 
out. The relation to methods using site symmetry is discussed. 
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1. Introduction 

For a lengthy period various methods for setting up symmetry-adapted linear combina- 
tions of atomic orbitals or atomic displacement vectors have been used. For all such 
cases Cotton [1 ] has introduced the general abbreviation SALe. In clearly arranged 
systems these SALC's may be guessed, or formed, with the aid of some plausible 
considerations like analogy with the surface harmonics at the molecular centre and 
the determination of some less obvious linear combinations by orthogonality relations. 
A systematic approach is possible by the projection operator technique [1 ,2] .  The 
drawback of this method is that it requires the knowledge of the complete represen- 
tation matrices and a summation over the entire symmetry group. Therefore simpli- 
fications have been sought by consideration of site symmetries and division of the 
atomic orbitals in o- and n-bonding ones. This however requires local, i.e. atom- 
dependent, coordinate systems and the interrelations between them. Finally group 
factorization methods were proposed by Melvin [3] and Flurry [4]. We think a 
satisfactory solution of the problem of SALC's should be a straightforward prescrip- 
tion using tabulated properties of the point groups only. Such a formula is proposed 
in the following. 

2. Induced Representations and SALC's 

We first list our notations: r and R i shall be the position vectors of an electron and 
of a set of equivalent atoms in a molecule having the symmetry group G. For the 
functions we use the Dirac notation, because this will save indices: ~ ( r  - R i )  = 
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(rl l ibra)  are the atomic orbitals classified according to representationa of group G, 
component m. This classification of functions at position R i is to be understood in the 
same sense as the expression "p-orbital at Ri", the relevant group merely being reduced 
from the full rotatiori group to G. The function r at the molecular centre is clasSi- 
fied according t o g  and m and then translated to position Ri. ~ may be thought of as 
an index distinguishing STO or GTO and main quantum numbers etc. Finally (**rn,#nl 
*p) are the Clebsch-Gordan coefficients and YLn~(R)~ (R ILan) the symmetry adapted 
spherical harmonics of group G (related to angular momentum L), termed surface 
harmonics by Breadley and Cracknell [5], both tabulated, for instance, by Koster et al. 
[6]. The component indices refer to one fixed coordinate system for the entire mole- 
cule. 

We next have to determine which irreducible representations ~ will be induced by the 
atomic orbitals I igdm). This is done by the character formula 

n(e) = (1/orda) ~ ~,(C)x* (e, C)X(t , C)o(C), (1) 
C 

where the summation index runs over all classes C of group G. X(C) is the number of 
group elements in class C, X(a, C) the character in representation a and a(C) the number 
of atoms not moved by a symmetry operation of class C. This o(C) is a class function 
because it is the trace of the matrix aik(g) defined by the change of atomic positions 
by the symmetry operation g: 

gRi = ~ gtci(g)'R k. (2) 
k 

This implies oki(g ) = 1, ifgR i =R k, and oki(g) = 0 otherwise. Formula (1) is a general- 
ization of the special case of displacement vectors given in Ref. [2], page 155. 

Because the representationsa induced by the atomic s-orbitals (or, termed otherwise, 
by the change-of-position matrices ogi(g)) will play a certain role in our key theorem, 
we now specialize (1) to the case of s-orbitals: 

n(~) = (1/ordG) ~ X(C)x*(~, C)o(C). (3) 
C 

Here we postpone the less- frequent case n(a~) ~> 2 to a special appendix concerning 
multiplicities. 

We now state the following key theorem: 

The entire set of SALC's induced by the atomic orbitals I ir is given by 

I(~,~)~p)= N -1 ~ ~ m , ~ n l c p )  (RilLam) " l i~n) .  (4) 
iron 

The SALC's are labelled by the representation e ,  component p according to which 

they transform, by representation,~ (inferred by the change of position) taken from 
the set determined by formula (3), and of course by ~. Since the correct normalization 
of I(a, ~)ep) would depend on the overlap integrals (ir it will be convenient 
to have a standard normalization under the assumption of non-overlapping orbitals [7, 8] : 
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( i ~ m  Ik~$q) = 6ik~m q �9 The standard normalization factor is then given by the number 
M of equivalent atoms: 

N = (  ~i I(RilLan)[2) 1/2" (5) 

Because of the appearance of the Clebsch-Gordan coefficients in (4) we have the follow- 
ing relation between the representations~, ~, ande: If one representation a determined 
by Eq. (3) is selected, the induced representations e are given by the character formula: 

m(e,,~) = (1/ordG) E k(C)x*(e, C) "X(a, C) �9 X(/~, C). (6) 
C 

From the consistency of (1) and (6)it  follows that: 

n(,)  = ~ m ( , , a )  " n(a~). (7) 
a 

For the present, in (4) and (6) the group G is assumed to be simply reducible. For the 
multiplicity m(e,a) >/2 we again refer to the pertinent appendix. 

3. Proofs 

We are now going to prove the propositions of the preceding section. To this end we 
first have to evaluate the transformation property of the atomic orbital functions 
l ir In doing so we denote the representation matrices by D~(g) and the operations 
in the function space by U(g). These operators take effect on the variable r only and 
not On the parameters R i or the function symbol itself: U(g)f(r) = f(g-1 r) and 
U(g)f(r - Ri) = f (g- l r  - Ri). Because of the representation property 

~O~m(g -lr) = E D~rn(g)~Sn(r) 
n 

we have: 

U(g)tp~m(r - Ri) = T~(g- l r  - Ri )= tPrnd(g-1 (r - gRi) ) = • D~km (g)gdg(r - gRi) 
k 

and using Eq. (2) in Dirac notation again: 

U(g) l i ~ m )  = ~ D~km(g) " ou(g) "1 lctk).  (8) 
tk 

Thus the representation matrix o fg  is given by the direct product D~n(g) �9 ou(g) and 
consequently its character is X(#, C) �9 o(C). The well-known character formula for the 
reduction of representations [9] then leads to (1). The special equation (3) follows from 
X(~,C)= 1 f o r ~ = A o g  ). 

To prove our key theorem we need a relation of the Clebsch-Gordan coefficients, which 
we take from Hamermesh ([10], page 150): 

Dr~n(g ) (~k,,~li~m) = ~. O ~ ( g )  . D~(g)" (a.p,#q [~n). (9) 
m p q  
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We now demonstrate that the functions I(~, ~)ep)given in (4) transform according to 
representatione. Using Eq. (8)we get: 

U(g)l(~, ~)cp) =N -1 ~ (a, rn,~n Itp)(R~ II~m)O~n(g)ou(g ) �9 I I~o~k). 
i m n k l  

Since ou(g ) = cril(g -1), we have 

(RilL~m)oli(g) = (g- lRl lLam) = ~ O~m(g)(RllLaq) 
i q 

and therefore: 

U(g)l(a, t )ep)=N -1 ~ (am,~nl~p)D~m(g)D~n(g)(RtlLaq)ll~o~k). 
m n k l q  

Now applying (9) we get the desired result: 

U(g) [ (~, ~ )eP ) = ~ Dsep (g) I (a,, ~)~ s ). 
$ 

Next we have to show that the standard normalization is correct. With the non-overlap 
assumption we have: 

( ( a , ~ ) e p l ( a , ~ p ) = N  -2 ~ ~m,~nl~p)*(RilLom)*(a,q,~nlep)(RilLaq).  
i m n q  

The sum over the surface harmonics is evaluated by the following method: Because 
the sum over R~ is the same as over g - lRi  (with g ~ G), we get: 

~. (RilLam)*(RilLaq) = ~ (g-lRi[Lam)*(g-lRilLaq) 
i i 

= ~ Dp~*m(g)'Dn~q(g)(RilL~)*(RilLan). 
i np  

Summing over all elements g E G and using the orthogonality relations of representation 
matrices ([10], page 103), we obtain: 

~. (Ri[L~m)*(RilLaxl) = ~mq(dim~) -1 ~ i(RilLan)l 2 = 6mq ~ I(RilLan)l 2. 
i in i 

Now using the orthogonality relations of the Clebsch-Gordan coefficients we obtain: 

((a.,~)epl~,#,)~p)=N -2 ~, [(RilLan)l 2 = 1 
i 

therefore Eq. (5) is true. 

Since relation (6) is simply the well-known character formula for the reduction of a 
direct product representation, we have to prove Eq. (7) only. We invert relation (3): 

o(C) = E = X( ~, C)" n(~) 
,6f 

and insert this into (1): 

n(e) = (1/ordG) E X(C)x*(~, C)- X(& C)" X(~, C) "n(a). 
C a  
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Now using (6) we obtain Eq. (7). The validity of (7) also assures that exhausting the 
full sets ~ and t according to (3) and (6) will make the SALC system complete. 
Expressed differently: the transformation given by Eq. (4) is unitary. 

4. Application Procedure 

To obtain the SALC's from a set of atomic orbitals l i~rn) one may now carry out the 
following procedure: 
1) Determine in each class of group elements the number o(C) of the atoms not moved 

by these transformations. 
2) Determine the representation~z by formula (3), or in simple cases by inspection 

utilizing the relation o(C) = ~ X(~, C). 

3) In the character tables of Refs. [6] and [11 ] surface harmonics belonging to,~ 
are specified. Of course one will use the lowest possible value of L. A detailed 
listing is also given in Ref. [5]. One may now tabulate the values (RilLam)/N. 

4) Choose one a and determine a representation c in principle by relation (6), but more 
conveniently with the help of the tabulations o f a  x g = ~ n(e) "e. 

5) Using the results of step 3) and the tabulation of the Clebsch-Gordan coefficients, 
we write down the linear combination coefficients: 

K(ep,~, i~n)= ~ ~m,~nl~p)(RilI_~on)/N. (10) 
m 

The SALC's are then 

[(~,~)~p) = ~ K(ep,a, idn)'li~o~n). (11) 
in  

For more extensive calculations it may be serviceable to carry out steps 4) and 5) for 
all representations ~ of group G, and to make a full tabulation of all coefficients. When 
the s-, p-, d- etc. orbitals are then decomposed according to the several representations 
~, the pertinent coefficients may be picked from these tables. 

5. Some Useful Relations 

Before going into details we remark that the linear combination coefficients containing 
the representationAog ) can, in general, be evaluated 

1) a, =A(lg): K(cp, A,i~n) =6~e 6np 'M -1/2 (12) 

2) ~ =A(lg): K(ep,~,iAo) =~zc(Ri[Lap)(47r/M) 1/2 (13) 

3) c =A(lg): K(Ao,~, i~n) = 6a~.(RilL~n)*(47r �9 dim~/M) 1/2. (14) 

As a precaution we have distinguished the complex conjugate representation 6" from ~, 
but in most cases ~* ~ ~. 

Further abridgement can be achieved by the following multiplication relation. A may 
be any one-dimensional representation and 6' = A x ~; then the relation ~ x ~ = ~ n(e) .~ 

c 
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turns over into a x/g' =r ~ n'(i~') "e '. This implies: When the orbitals of  species ~ induce 
c' 

representation e ,  then the species g '  induces ~'. (In Appendix B of  [12],  where similar 
considerations are carried out for the octahedral group, the representat ionsa '  are called 
associated wi tha .  In general there will be more than one one-dimensional representation 
and therefore several different associated representations.) The corresponding relation 
of the components is slightly more complicated: 

la 'n)  = ~ (ap, Ao [a 'n)-  lap)" [ A o ) .  
p 

But in nearly all cases all the coefficients (~p, Ao la 'n)  are zero except one, for which 
I~P, Ao Idn) l  = 1. 

When we now introduce the unimodular number W (actually a special Racah coefficient 
of  the point group) by 

W=(1/dimc) ~ (~'sl~q, Ao)~m,~qlep) (cp ,  Aole'r)(e'rl~m,~'s) (15) 
sqmpr 

we obtain the relation 

~rn ,  g ' s  le 'r) = (1/W) ~. (~'s Igq, Ao )~vn, gq [ep)(~p, Ao l e ' r )  
pq 

and consequently from (10): 

K( ~'r,,~, i~'s) = ( l /W) ~ (g's Igq , Ao ) K(ep,~,  i~l )(~p, ao I~'r). (16) 
pq 

This nearly always reduces to a simple proportionality. In the case ~ '  = A x ~ = ~ the 
components may be reordered and attached with a (complex) sign, for instance in the 
case A 2 x E = E of the cubic groups. 

When the (gp, Ao l~'r) are not tabulated, one may use 

(~p, Ao Ig'r) = (Ao,~ '*r [/~*p). (17) 

This relation is explicable by the symmetry of  the V-coefficients introduced by 
Griffith [12] analogous to the 3/-symbols of  the rotation group. 

6. Example 

As an example we study the tetrahedron, which appears in molecules, dusters or com- 
plexes of  type A 4 or BA 4. In the case of  the s- and p-orbitals, and the displacement 
vectors, respectively, we shall reproduce known results [13]. When considering the 
tetrahedral clusters Cu4 [14],  Fe 4 [15],  or even the molecule P4, one must also take 
account of  the d-orbitals. Therefore we will work out a full tabulation for orbitals of  
all symmetry species d. 

We use the following notation of the components.  For E: 1(~3z 2 - r 2) and 2(~x 2 _ y 2 ) ;  
for T1 : 1 ,2,  3 or, equivalently, yz,  zx, xy; and for T2 : 1 ,2,  3 equivalent to x, y ,  z. 
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Steps 1) and 2) 

The symmetry group Ta contains the classes E, 8C3, 3C2, 6S4 and 6o a. Because the 
axes of  C 2 and $4 do not pass through atoms, we have a(C2) = o(5:4) = 0. The axes C3 
and the mirror planes ~r a pass through one and two atoms respectively. Together with 
the characters o f A  1 and 7'2 we obtain Table 1. We therefore conclude the induced 
representations a~ to be A a and T 2. 

Table 1. Characters a(C), • 1, C), • C) of group Tel 

E 8C3 3Cz 6S4 6:r a 

a(C) 4 1 0 0 2 
x(A1, C) 1 1 1 l 1 
x(T2, C) 3 0 -1 -1 1 

Step 3) 

We first give the positions of  atoms: R 1 = (1, 1, 1)~ R 2 = (1, - 1 ,  - 1 ) ,  R 3 = ( - 1 ,  - 1 ,  l)~ 
R 4 = ( - 1 ,  1, - 1 ) .  The relevant surface harmonics are: (R 10A lO) = (4zr) -I /2 and 
(RI1T2n) = (3/4zrr)t/2xn with R = (Xl, x2,  x3) .  

Table 2. Values of the surface harmonics 
at the points R 1 

R1 R2 R3 R4 

(RilOAIo)/N 1/2 1/2 1/2 1/2 
(RiI1T2x)/N 1/2 1/2 -1/2 -1/2 
(RiI1T2y)/N 1/2 -1/2 -1/2 1/2 
(RillT2z)/N 1/2 -1[2 1/2 -1/2 

Step 4) 

Since we want to consider all representations ~ ,  we set up a table o f a  x ~:  

Table 3. Evaluation of  the direct products ~vx~ 

~=AI  A2 E T 1 T2 

~V=A1 A1 A2 E T1 T2 
~=T2 T2 T1 TI+T2 A2+E+TI+T2 AI+E+TI+T2 

Step s) 

Because of  Eq, (12)  the case a = A 1 is already settled, So we will only tabulate the 
coefficients with a = T~. The one-dimensional representation A z enables us to reduce 
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the number of coefficients which must be independently computed. With Eqs. (13) to 
(17) we obtain the following (W = 1 always except for K(Er, 7"2, iTlS): W = -1) :  

K(Tlr, T2, iA20) = K(T2r, T2, iA1 o) = (Ri[ 1T2r)/N 

K(A 2o, "1"2, iTl s ) = K(A lo, T2, iT2s ) = (Ri[1T2s)/(31/2N) 

K(Tlr, T2,/E2) =K(T2r, T2,/El) 

K ( T l r ,  7 ' 2 , / E l )  = - K ( T 2 r ,  1"2,/E2) 

K(E1,  T2, iT lS  ) = K(E2,  T2, iT2s ) 

K(E2,  T2, iT l s  ) = - K ( E 1 ,  T2, iT2s ) 

K(T2r,  7"2, iTlS)  = K ( T I r ,  T 2, iT2s) 

K ( T l r ,  7"2, iTas) = K(T2r,  7"2, iT2s) 

To utilize these relations the fol lowing table is to be read a) f rom the head and the left  

for one coeff ic ient  and b)  f rom the  b o t t o m  and right for the related one.  

Table 4. a) The SALC coefficients K(T2r, 7"2,/A lO), headqine and left; 
b) the SALC coefficients K(Tlr, 7"2, iA2o), bottom and right 

Position R i = R 1 R 2 R3 R4 

0rbitab/~= A1 A1 A1 A1 

T2x 1/2 1/2 - 1/2 - 1/2 TlYZ ) 
T2r = T2Y 1/2 - 1 / 2  - 1 / 2  1/2 T l z x )  = T1 r 

T2 z 1/2 - 1 / 2  1/2 - 1 / 2  Tlxy 

A 2 A 2 A 2 A 2 = ~ Orbital 

R1 R2 R3 R4 = R i Position 

Table 5. a) The SALC coefficients K(T2r, T2,/Es), headline and left; b) the SALC coefficients 
K(Tlr, T2, iEs), bottom right. Abbreviations: t = 1/4, u = 31/2/4, v = 1/2 

Position R i = R 1 R2 R3 R4 

orbitalt~s = E1 ~ E2 E1 E2 E1 E2 E1 E2 

IT2x  - t  u - t  u t - u  t - u  TlyZ 
T2r = T2Y - t  - u  t u t u - t  - u  Tlzx j = Tff 

T2x v 0 - v  0 v 0 - v  0 TlXy 

E2 - E l  E2 - E l  E2 - E l  E2 - E l  =/~ s Orbital 

R1 R 2 R 3 R 4 = R i Position 
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The SALC's for special cases can now be quoted. We givesome examples. The SALC's of  
species E induced by p-orbitals (= 7"2) according to Table 6a are: 

1(7"2, T2)E1) = 24 -1/2 . [ - p x ( R 1 )  - p y ( R 1 )  + 2pz(R1) - p x ( R 2 )  +py(R2)  

- 2pz(R2) + Px(R3)  + py(R3)  + 2pz(R3) + Px(R4)  - p y ( R 4 )  

- -  2pz(R4) ] 

I(r~, :r2)E2> = 8 -1/2 �9 [p~(R1) - p A R 1 )  + p~(R2)  + py(R2)  - p~(R3)  + py(R3)  

- -  px(R4)  - py (R4)  ] . 

The d-orbitals yz ,  zx,  xy  belong to T1, d 1 ~ 3z 2 - r 2 , d 2 ~ x 2 _ y 2  to E. We give the 
species T 1 induced by the d-E-orbitals according to Table 5b: 

[ (T2 ,E)T ly z )  = 4 - 1 "  [ - d 2 ( R 1 ) -  31/2dl(R1)- d 2 ( R 2 ) -  31/2dl(R2) 

+d2(R3) + 31/2dl(R3) + d2(R4) + 31/2dl(R4)] 

](T2, E)TlZX) = 4 -1 " [ - d 2 ( R 1 )  + 31/2dl(R1) + d2(R2) - 3112d1(R2) 

+ dz(R3)  - 31~2all(R3) - d2(R4) + 31/2d1(R4)] 

I(T 2, E ) T l x y )  = 2 -1" [dl(R 1) - dl(R2) + dl(R3) - dl(R4)] �9 

7. Relation to the Site Symmetry Method 

We have specified the atomic orbitals according to the representations of the symmetry 
group G of  the entire molecule. Other methods already mentioned classify the orbitals 
according to the representations of  the site symmetry groups G i at position R i. These 
are subgroups o f g  defined by G i = {h I hR i = Ri, h E G} and are isomorphic to each 
other by the mapping gikGkg~ 1 = Gi, where gig is defined by gikRk = Ri. So they 
have the same representations~, but the orientation of axes is individual for each atom. 
The orbitals classified according to ~ at position R i may be denoted as (oAm(r - Ri)  = 
] i~an ) .  The SALC's induced by these orbitals are the following linear combinations: 

[(~)~s) = ~ K'(~s, ~ m ) ' l  i t ~ n ) .  (18) 
im 

When the [ i t~ 'n )  are atomic orbitals, they are related to the [ir ones by subduction 
via the (position dependent !) subduction coefficients (~p ]d /~ ) ,  cf. Ref. [ 16]. The 
quoted relation is: 

[ i(pO~m)= ~ (~plg/Om)-li~p~p).  (19) 
P 

If  we now insert (19) in to  Eq. (18), we get 

[(a, g)es) = Z K'(es,  i&n)(gp Igi&n)[ir (20) 
imp 

in concurrence with Eq. (4). Since the [ (~v,d)es) form a complete set and 
((~, g)es  I (~  g)es)  = A(&a~) is independent of  s, we have in general the relation: 

i (~ ,~)~s>= ~ A ( a , , 0  .l(,~,~)~s>. (21) 
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This is similar to the recoupling relations of  angular momentum and relates the g ~ a  
-+e  induced basis set to the g -->~ -+ e one. Because of  n(c) = 1 in Eq. (1) with only a 
few exceptions (21) reduces in most cases to 

n(e)= 1: I(a, ~)~s> = I(,~,~).s>. (22) 

For the tetrahedron or octahedron, for instance, the only exceptions from (22) occur 
under the condition that ~ and ~ equal T 1 or T 2, in which case sometimes n(e) = 2. 

The advantage of  the orbitals [ i~?fitrn)is the suggestive separation of  o-bonds ( s  A 1 ) 
and rr-bonds (,~ = E in cases of  site symmetry containing a C 3- or C4-axis ). This has 
its main importance for aggregates o f t  ype AXn, especially when X is an aggregate itself 
like CN-. On the contrary, in aggregates o f type Xn, like Fe4, Nb6, P4, S s etc., this 
separation is not significant. But even in the case AX n this separation is not necessarily 
introduced from the beginning, because according to (22) the [(t r, ~)es)-SALC'S do 
not mix o- and 7r-orbitals either. For atoms in less symmetric positions, like the 
H-atoms in Ni(NH3)42+, a multiplicity r~(~) ~> 2 occurs of  course more frequently, but  
there will seldom be direct bond to a central a tom with such a high coordination 
number.  

When it is in fact necessary to set up the coefficients K'(es, ikm) one can proceed in 
the following way: for each representation d of  G i one takes a parent representation 

of G, which does not split under subduction, i.e. g -+g~. In the example of  the tetra- 
hedron, A 1, A 2, E of  group Ta go over into A 1, A 2, E of  C 3 v. Then the subduction 
coefficients m~rely give a reorientation of the coordinate systems adequate to position 
R i, which obviously must be known. Now Eq. (22) yields: 

K'(e,s, i/s ~ (~igzm I~p)K(es,a, i~p). 
P 

(23) 

Appendix 1: Multiplicities 

In the main part we have supposed no multiplicity in two passages. First, concerning 
(3) and (4), we deferred the case of  one representation a occurring more than once, 
indicated by n(~)/> 2. This will be realized when the equivalent atoms are in positions 
of  relatively low site symmetry,  the highest possible value being n(~) = d im~,  since 
on condition of lowest site symmetry there are as many equivalent atoms as group 

elements and the s-orbitals induce the regular representation. To realize the consequences 
one should consult Eq. (13). Because there must exist two different realizations ofa~, 
distinguished by an additional index ~ asao~, we must make use of  surface harmonics of  
different angular momentum L~ : (RILo~p).  The SALC's constructed in this way will 
not be orthogonal in general for different c~. But this is natural, because any orthogonal- 
ization like the normalization must depend on the overlap integrals. It is, o f  course, 
possible to introduce a standard orthogonalization analogous to (5). 

Another well-known multiplicity arises when the group G is not simply reducible [17] 
and c occurs more than once in the product ~ x ~, i.e. rn(c, ~)  ~> 2 in Eq. (6). The 
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Clebsch-Gordan coefficients must then also be labelled by  an additional index [ 16, 18] : 

( am,~n  leTP>. Thus, in general, Eq. (4) must be replaced by:  

I(~a, b)c3'p> = N -x ~ ~ m , ~ n  IcTp)(RilLa, a.n)l i~n>, (24) 
in 

where a takes the values from 1 to n(a)  and 3' from 1 to m(e, a,). 

Appendix 2: Hybrid Orbitals 

Since the hybrid orbitals located at the molecular centre, suitable to describe o-bonds 
with ligand atoms, obviously have the same structure as the s-ligand orbitals, we con- 
clude that the transformation from central surface harmonics to hybrid functions is 
the inverse one of  the transformation from ligand s-orbitals to SALC's. We specify 

Eq. (4) to r h e A  1 case: 

I(a, A 1 ) a p ) = N  -1 ~ (RiILaP)Ii~Alo).  
i 

We can now give the general formula for o-hybrid orbitals in coordinations of  symmetry 

group G: 

I o-hyb, i) = ~ N - l ( R i l ~ ) * l L a m ) ,  (25) 
~ m  

the sum rumaing over those ~ given by formula (3). To prove Eq. (25) we have to demon- 
strate that  the functions I e-hyb, i> transform in the same way as the s-orbitals [ i~A ~o): 

U(g)lo-hyb, i) = ~ N-l(Ril[zan)*Offm(g)lL~p) 
anp 

= ~ N-l<gRilZ~p>*lZ~p> 
ap 

= ~ N-loki(g)<RklLap>*lLap> = ~ etci(g)[o-hyb, k>. 
apk k 

This coincides with transformation (8) for the ~ = .41 case. 
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